18 research outputs found

    Improving the Accuracy of the Internet Cartography

    Get PDF
    As the global Internet expands to satisfy the demands of the ever-increasing connected population, profound changes are occurring in its interconnection structure. The pervasive growth of IXPs and CDNs, two initially independent but synergistic infrastructure sectors, have contributed to the gradual flattening of the Internet’s inter-domain hierarchy with primary routing paths shifting from backbone networks to peripheral peering links. At the same time the IPv6 deployment has taken off due to the depletion of unallocated IPv4 addresses. These fundamental changes in Internet dynamics has obvious implications for network engineering and operations, which can be benefited by accurate topology maps to understand the properties of this critical infrastructure. This thesis presents a set of new measurement techniques and inference algorithms to construct a new type of semantically rich Internet map, and improve the state of the art in Internet cartography. The author first develops a methodology to extract large-scale validation data from the Communities BGP attribute, which encodes rich routing meta-data on BGP messages. Based on this better-informed dataset the author proceeds to analyse popular assumptions about inter-domain routing policies and devise a more accurate model to describe inter-AS business relationships. Accordingly, the thesis proposes a new relationship inference algorithm to accurately capture both simple and complex AS relationships across two dimensions: prefix type, and geographic location. Validation against three sources of ground-truth data reveals that the proposed algorithm achieves a near-perfect accuracy. However, any inference approach is constrained by the inability of the existing topology data sources to provide a complete view of the inter-domain topology. To limit the topology incompleteness problem the author augments traditional BGP data with routing policy data obtained directly from IXPs to discover massive peering meshes which have thus far been largely invisible

    Cloud Instance Management and Resource Prediction For Computation-as-a-Service Platforms

    Get PDF
    Computation-as-a-Service (CaaS) offerings have gained traction in the last few years due to their effectiveness in balancing between the scalability of Software-as-a-Service and the customisation possibilities of Infrastructure-as-a-Service platforms. To function effectively, a CaaS platform must have three key properties: (i) reactive assignment of individual processing tasks to available cloud instances (compute units) according to availability and predetermined time-to-completion (TTC) constraints; (ii) accurate resource prediction; (iii) efficient control of the number of cloud instances servicing workloads, in order to optimize between completing workloads in a timely fashion and reducing resource utilization costs. In this paper, we propose three approaches that satisfy these properties (respectively): (i) a service rate allocation mechanism based on proportional fairness and TTC constraints; (ii) Kalman-filter estimates for resource prediction; and (iii) the use of additive increase multiplicative decrease (AIMD) algorithms (famous for being the resource management in the transport control protocol) for the control of the number of compute units servicing workloads. The integration of our three proposals into a single CaaS platform is shown to provide for more than 27% reduction in Amazon EC2 spot instance cost against methods based on reactive resource prediction and 38% to 60% reduction of the billing cost against the current state-of-the-art in CaaS platforms (Amazon Lambda and Autoscale)

    Query Processing For The Internet-of-Things: Coupling Of Device Energy Consumption And Cloud Infrastructure Billing

    Get PDF

    Media Query Processing for the Internet-of-Things: Coupling of Device Energy Consumption and Cloud Infrastructure Billing

    Get PDF
    Audio/visual recognition and retrieval applications have recently garnered significant attention within Internet-of-Things (IoT) oriented services, given that video cameras and audio processing chipsets are now ubiquitous even in low-end embedded systems. In the most typical scenario for such services, each device extracts audio/visual features and compacts them into feature descriptors, which comprise media queries. These queries are uploaded to a remote cloud computing service that performs content matching for classification or retrieval applications. Two of the most crucial aspects for such services are: (i)(i) controlling the device energy consumption when using the service; (ii)(ii) reducing the billing cost incurred from the cloud infrastructure provider. In this paper we derive analytic conditions for the optimal coupling between the device energy consumption and the incurred cloud infrastructure billing. Our framework encapsulates: the energy consumption to produce and transmit audio/visual queries, the billing rates of the cloud infrastructure, the number of devices concurrently connected to the same cloud server, the query volume constraint of each cluster of devices, and the statistics of the query data production volume per device. Our analytic results are validated via a deployment with: (i)(i) the device side comprising compact image descriptors (queries) computed on Beaglebone Linux embedded platforms and transmitted to Amazon Web Services (AWS) Simple Storage Service; (ii)(ii) the cloud side carrying out image similarity detection via AWS Elastic Compute Cloud (EC2) instances, with the AWS Auto Scaling being used to control the number of instances according to the demand.This work was supported in part by the European Union (Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant 655282 – F. Renna), in part by EPSRC under Grant EP/M00113X/1 and Grant EP/K033166/1, and in part by Innovate U.K. (project ACAME under Grant 131983)

    Escaping the complexity-bitrate-quality barriers of video encoders via deep perceptual optimization

    Get PDF
    We extend the concept of learnable video precoding (rate-aware neural-network processing prior to encoding) to deep perceptual optimization (DPO). Our framework comprises a pixel-to-pixel convolutional neural network that is trained based on the virtualization of core encoding blocks (block transform, quantization, block-based prediction) and multiple loss functions representing rate, distortion and visual quality of the virtual encoder. We evaluate our proposal with AVC/H.264 and AV1 under per-clip rate-quality optimization. The results show that DPO offers, on average, 14.2% bitrate reduction over AVC/H.264 and 12.5% bitrate reduction over AV1. Our framework is shown to improve both distortion- and perception-oriented metrics in a consistent manner, exhibiting only 3% outliers, which correspond to content with peculiar characteristics. Thus, DPO is shown to offer complexity-bitrate-quality tradeoffs that go beyond what conventional video encoders can offe

    Inferring multilateral peering

    Get PDF
    The AS topology incompleteness problem is derived from difficulties in the discovery of p2p links, and is amplified by the increasing popularity of Internet eXchange Points (IXPs) to support peering interconnection. We describe, implement, and validate a method for discovering currently invisible IXP peering links by mining BGP communities used by IXP route servers to implement multilateral peering (MLP), including communities that signal the intent to restrict announcements to a subset of participants at a given IXP. Using route server data juxtaposed with a mapping of BGP community values, we can infer 206K p2p links from 13 large European IXPs, four times more p2p links than what is directly observable in public BGP data. The advantages of the proposed technique are threefold. First, it utilizes existing BGP data sources and does not require the deployment of additional vantage points nor the acquisition of private data. Second, it requires only a few active queries, facilitating repeatability of the measurements. Finally, it offers a new source of data regarding the dense establishment of MLP at IXPs

    Steering hyper-giants' traffic at scale

    Get PDF
    Large content providers, known as hyper-giants, are responsible for sending the majority of the content traffic to consumers. These hyper-giants operate highly distributed infrastructures to cope with the ever-increasing demand for online content. To achieve 40 commercial-grade performance of Web applications, enhanced end-user experience, improved reliability, and scaled network capacity, hyper-giants are increasingly interconnecting with eyeball networks at multiple locations. This poses new challenges for both (1) the eyeball networks having to perform complex inbound traffic engineering, and (2) hyper-giants having to map end-user requests to appropriate servers. We report on our multi-year experience in designing, building, rolling-out, and operating the first-ever large scale system, the Flow Director, which enables automated cooperation between one of the largest eyeball networks and a leading hyper-giant. We use empirical data collected at the eyeball network to evaluate its impact over two years of operation. We find very high compliance of the hyper-giant to the Flow Director’s recommendations, resulting in (1) close to optimal user-server mapping, and (2) 15% reduction of the hyper-giant’s traffic overhead on the ISP’s long-haul links, i.e., benefits for both parties and end-users alike.EC/H2020/679158/EU/Resolving the Tussle in the Internet: Mapping, Architecture, and Policy Making/ResolutioNe

    Sibyl:A Practical Internet Route Oracle

    Get PDF
    Network operators measure Internet routes to troubleshoot problems, and researchers measure routes to characterize the Internet. However, they still rely on decades-old tools like traceroute, BGP route collectors, and Looking Glasses, all of which permit only a single query about Internet routes—what is the path from here to there? This limited interface complicates answering queries about routes such as "find routes traversing the Level3/AT&T peering in Atlanta," to understand the scope of a reported problem there. This paper presents Sibyl, a system that takes rich queries that researchers and operators express as regular expressions, then issues and returns traceroutes that match even if it has never measured a matching path in the past. Sibyl achieves this goal in three steps. First, to maximize its coverage of Internet routing, Sibyl integrates together diverse sets of traceroute vantage points that provide complementary views, measuring from thousands of networks in total. Second, because users may not know which measurements will traverse paths of interest, and because vantage point resource constraints keep Sibyl from tracing to all destinations from all sources, Sibyl uses historical measurements to predict which new ones are likely to match a query. Finally, based on these predictions, Sibyl optimizes across concurrent queries to decide which measurements to issue given resource constraints. We show that Sibyl provides researchers and operators with the routing information they need—in fact, it matches 76% of the queries that it could match if an oracle told it which measurements to issue

    On the Origin of Scanning: The Impact of Location on Internet-Wide Scans

    Get PDF
    Fast IPv4 scanning has enabled researchers to answer a wealth of security and networking questions. Yet, despite widespread use, there has been little validation of the methodology’s accuracy, including whether a single scan provides sufficient coverage. In this paper, we analyze how scan origin affects the results of Internet-wide scans by completing three HTTP, HTTPS, and SSH scans from seven geographically and topologically diverse networks. We find that individual origins miss an average 1.6–8.4% of HTTP, 1.5–4.6% of HTTPS, and 8.3–18.2% of SSH hosts. We analyze why origins see different hosts, and show how permanent and temporary blocking, packet loss, geographic biases, and transient outages affect scan results. We discuss the implications for scanning and provide recommendations for future studies

    Inferring AS Relationships from BGP Attributes

    No full text
    The type of business relationships between the Internet autonomous systems (AS) determines the BGP inter-domain routing. Previous works on inferring AS relationships relied on the connectivity information between ASes. In this paper we infer AS relationships by analysing the routing polices of ASes encoded in the BGP attributes Communities and the Locpref. We accumulate BGP data from RouteViews, RIPE RIS and the public Route Servers in August 2010 and February 2011. Based on the routing policies extracted from data of the two BGP attributes, we obtain AS relationships for 39% links in our data, which include all links among the Tier-1 ASes and most links between Tier-1 and Tier-2 ASes. We also reveal a number of special AS relationships, namely the hybrid relationship, the partial-transit relationship, the indirect peering relationship and the backup links. These special relationships are relevant to a better understanding of the Internet routing. Our work provides a profound methodological progress for inferring the AS relationships
    corecore